New Pricing Plan and Enhanced Networking for Azure Container Apps in Preview

Microsoft recently announced a new pricing plan and enhanced networking for Azure Container Apps in public preview.

Azure Container Apps is a fully managed environment that enables developers to run microservices and containerized applications on a serverless platform. It is flexible and can execute application code packaged in any container without runtime or programming model restrictions.

Earlier Azure Container Apps had a consumption plan featuring a serverless architecture that allows applications to scale in and out on demand. Applications can scale to zero, and users only pay for running apps.

In addition to the consumption plan, Azure Container Apps now supports a dedicated plan, which guarantees single tenancy and specialized compute options, including memory-optimized choices. It runs in the same Azure Container Apps environment as the serverless Consumption plan and is referred to as the Consumption + Dedicated plan structure. This structure is in preview.

Mike Morton, a Senior Program Manager at Microsoft, explains in a Tech Community blog post the benefit of the new plan:

It allows apps or microservice components that may have different resource requirements depending on component purpose or development stack to run in the same Azure Container Apps environment. An Azure Container Apps environment provides an execution, isolation, and observability boundary that allows apps within it to easily call other apps in the environment, as well as provide a single place to view logs from all apps.

At the Azure Container Apps environment scope, compute options are workload profiles. The default workload profile for each environment is a serverless, general-purpose profile available as part of the Consumption plan. For the dedicated workload profile, users can select type and size, deploy multiple apps into the profile, use autoscaling to add and remove nodes and limit the scaling of the profile.

Source: https://techcommunity.microsoft.com/t5/apps-on-azure-blog/azure-container-apps-announces-new-pricing-plan-and-enhanced/ba-p/3790723

With Container Apps, one architect has another compute option in Azure besides App Service and Virtual Machines. Edwin Michiels, a Tech Customer Success Manager at Microsoft, answered in a LinkedIn post the difference between Azure Container Apps and Azure Apps Service, which offer similar capabilities:

In terms of cost, Azure App Service has a pricing model based on the number of instances and resources used, while Azure Container Instances and Azure Kubernetes Service are billed based on the number of containers and nodes used, respectively. For small to medium-sized APIs, Azure App Service may be a more cost-effective option, while for larger or more complex APIs, Azure Container Instances or Azure Kubernetes Service may offer more flexibility and cost savings.

The Consumption + Dedicated plan structure also includes optimized network architecture and security features that offer reduced subnet size requirements with a new /27 minimum, support for Azure Container Apps environments on subnets with locked-down network security groups and user-defined routes (UDR), and support on subnets configured with Azure Firewall or third-party network appliances.

The new pricing plan and enhanced networking for Azure Container Apps are available in the North Central US, North Europe, West Europe, and East US regions. Billing for Consumption and Dedicated plans is detailed on the Azure Container Apps pricing page.

Lastly, the new price plan and network enhancements are discussed and demoed in the latest Azure Container Apps Community Standup.

My Azure Security Journey so far

I like to travel, explore and admire new environments. Similarly, in my day-to-day job, I want to explore new technologies, look at architectural challenges with the solutions I design, and help engineers.

Exploring is my second nature; it’s my curiosity and desire to learn – experience new things. With Cloud Computing, many developments happen daily, including new services, updates, and learnings. I like that, and with my role at InfoQ, I can cover these developments through news stories. Moreover, in my day job, I deal with cloud computing daily, specifically Microsoft Azure and integrating systems through Integration Services.

Exams

An area that got my attention this year was governance and security.  I wrote two blogs this year – a blog on secret management in the cloud and one titled a high-level view of governance. In addition, I started exploring resources from Microsoft on Governance and Security on their learning platform. And recently, I planned to prepare for some certifications for that matter with:

  • Exam SC-900: Microsoft Security, Compliance, and Identity Fundamentals
  • Exam AZ-500: Microsoft Azure Security Technologies
  • Exam SC-100: Microsoft Cybersecurity Architect

I passed the first, and the other two are scheduled for Q1 in 2023.

The goal of preparing for the exams is learning more about security, as its an important aspect when designing integration solutions in Azure.

Screenshot showing security design areas.

Source: https://learn.microsoft.com/en-us/azure/architecture/framework/security/overview

Another good source is the well-architected framework: Security Pillar.

New Items

The dominant three public cloud providers, Microsoft, AWS, and Google, provide services and guidance on security on their platforms. As a cloud editor at InfoQ, I sometimes cover stories on their products, open-source initiatives, and architecture. Here’s a list of security and governance-related news items I wrote in 2022:

Source: https://github.com/ine-labs/AzureGoat#module-1

Books

Next to writing news items, my day-to-day job, traveling, and sometimes running, I read books. The security-related books I read and am reading are:

Another one I might get is a recent book published by APress titled: Azure Security For Critical Workloads: Implementing Modern Security Controls for Authentication, Authorization, and Auditing by Sagar Lad.

Microsoft Valuable Professional Security

Another thing I recently learned is that there is a new award category within the MVP program: Azure Security. The focus for this area lies on contributions in:

  • Cloud Security in general on Azure, think about Microsoft Azure services like Key Vault, Firewall, Policy, and concepts like Zero Trust Model and Defense in Depth.
  • Identity & Access, including management, hence Azure Active Directory (AAD) or, in general, Microsoft Entra.
  • Security Information and Event Management (SIEM) & Extended Detection and Response (XDR) – think about Microsoft’s product Sentinel.

Lastly, I am looking forward to 2023, which will bring me new challenges, destinations to travel to, and hopefully, success in passing the exams I have lined up for myself.

The value of having a Third-party Monitoring solution for Azure Integration Services

My day-to-day job focuses on enterprise integration between systems in the cloud and/or on-premises. Currently, it involves integration with D365 Finance and Operations (or Finance and Supply Change Management). One aspect of the integrations is monitoring. When a business has one or more Azure Integration Service running in production, the operation aspect comes into play. Especially integrations that support crucial business processes. The operations team requires the correct procedures, tools, and notifications (alerts) to run these processes. Procedures and receiving notifications are essential; however, team members need help identifying issues and troubleshooting. Azure provides tools, and so do third-party solutions. This blog post will discuss the value of having third-party monitoring in place, such as Serverless360.

Serverless360

Many of you who read blogs on Serverless360 know what the tool is. Moreover, it is a service hosted as a Software as a Service (SaaS). Therefore, operation teams can require access once a subscription is acquired or through a trial. Subsequently, they can leverage the primary business application, business activity monitoring, and documenter feature within the service. We will briefly discuss each feature and its benefits and value in the upcoming paragraphs.

Business Applications

A team can configure, and group integration components with the business applications feature a so-called “Business Application” to monitor. It does not matter where the resources reside – within one or more subscriptions/resource groups.

Business Application

The overview shown above is the grouping of several resources belonging to an integration solution. In one blink of an eye, a team member of the operations team can see the components’ state and potential issues that need to be addressed. Can the same be done in Azure with available features such as Azure Monitor, including components like Application Insights? Yes, it can be done. However, it takes time to build a dashboard. Furthermore, when operations are divided into multiple tiers, first-tier support professionals might not be familiar with the Azure Portal. In a nutshell, an overview provided by Business Application is not present in Azure out-of-the-box.

As Lex Hegt, Lead Product Consultant at BizTalk360, points out:

Integration solutions can span multiple technologies, resource groups, tags, and even Azure subscriptions. With the Azure portal having the involved components in all those different places, it is hard to keep track of the well-being of those components. Serverless360 helps you utilize the concept of Business Applications. A Business Application is a container to which you can add all the components that belong to the same integration. Once you have added your components to a Business Application, you can set up monitoring for those components, provide access permissions, and administer them.

The Business Application brings another feature that provides an overview of the integration components and dependencies. You might be familiar with the service map feature in Application Insights on a more fine-grained level. The service map in Serverless360 is intended to show the state of each component and dependency on a higher level.

Within a business application, the configuration of monitoring components is straightforward. By selecting the component and choosing the monitoring section, you can set thresholds of performance counters and set the state.

Performance Counters

The value of Business Applications is a quick view of the integrations state and the ability to dive into any issue quickly, leading to time-saving by spending far less time identifying the problem (see, for instance, Application Insights health check with Serverless360, and Integrating Log Analytics in Serverless360). With more time on their hand’s operations teams can focus on various other matters during a workday or shift. Furthermore, the ease of use of Business Applications doesn’t require support people in a first-tier support team to have a clear understanding and experience of the Azure portal.

Having a clear overview is one thing. However, it also helps operations teams get notifications or finetune metrics based on thresholds and only receive information when it matters. In addition, it’s essential to keep integrations operational when they support critical business processes, as any outage costs a significant amount of money.

Business Activity Monitoring

The second feature of Serverless360 is the end-to-end tracking capability called Business Activity Monitoring (BAM). The BAM feature organization can instrument their Azure resources that support integrations between systems. Through a custom connector and SDK, you can add tracking to Logic Apps and Azure Functions that are a part of your integration. A unique generated transaction instance-id in the first component will be carried forward to the subsequent stages in more functions and Logic Apps.

The operations team must do some work to leverage the BAM functionality. They need to set up the hosting of the BAM infrastructure, define the business process, instrument the business process and add monitoring (see, for instance, Azure Service Bus Logging with BAM – Walk-through). Once that is done, a clear view of the process and its stages are available.

Business Activitity Monitoring (BAM)

The benefit of the BAM feature is a concise overview of the configured business processes. Moreover, you get an overview of the complete process and potentially see where things go wrong.

Azure Documenter

The final feature Serverless360 offers the Azure Documenter is intended to generate documentation. Operations teams can generate documentation for the subscription that contains the integrations with the documenter. It is good to have a dedicated subscription for integration solutions to govern better and manage Azure resources.

When operations teams like to generate documentation, they can choose between different templates, storing of the document, and billing range.

Azure Documenter

The benefit of having documentation of the integrations in a subscription is having a clear overview of the components, details, and costs (consumption). While the Azure portal offers a similar capability, you will have to go to the Cost management and billing to see consumption and cost, Azure Advisor, and other places. Furthermore, there is no feature to generate documentation to help report the Azure resources’ state.

Report Azure Documenter

The value of the Azure Documenter is the flexibility for generating documentation on a different level of granularity. Furthermore, by frequently running the documenter, you can spot differences like an unexpected increase in cost provide executive reports and information for your knowledge base for integrations.

Conclusion

Features and benefits of Serverless360 have been outlined in this blog post. Of course, there are many more features. Yet, we focused on the most significant one that provides Operations teams the most value. That is a clear overview of the state of integrations in a single-pane-of-glass and the ability to quickly drill down into integration components and spot issues at a fine-grained level. Furthermore, Business Activity Monitoring and Azure Documenter provide end-to-end tracking and generated documentation.

Serverless 360 Monitoring

Serverless360 offers an off-the-shelf product for monitoring not directly available in the Azure Portal. As an organization, you can decide whether to buy a product or build a custom solution, or both to fulfill monitoring requirements for integration solutions. Serverless360 can be the solution for organizations looking for a product to meet their needs. It has unique features which are not directly available in Azure or require a substantial investment to achieve.

For more details and Serverless360 in action, see the webinar of Michael Stephenson: Support Strategy for Event-Driven Integration Architectures and the latest features blog.

Should developers care about Azure Cost?

The days of prepurchasing a large amount of infrastructure are gone. Instead, in the Cloud, we deal with buying small units of resources at a low cost. As a result, developers have the freedom to provision resources and deploy their apps. They can spend company money at a click of a button or line of code. There is no longer a need to go through any procurement process.

Therefore you could ask the question: Should developers be aware of the running costs of their apps and belonging infrastructure? And also worry about SKU’s, dimensioning, and unattended resources? I would say yes, they should be aware. Depending on requirements, environments (dev, test, acceptance, and production), availability, security, test strategy, and so on, costs will accumulate. Having an eye on the cost from the start will prevent discussion when the bill is too high at the end of the month or lacks justifying of the chosen deployment of Azure resources. 

Fortunately, there are services and tools available to help you in the estimation of costs, monitoring, and analysis for cost optimization. Furthermore, you can help identify costs by applying tags to your Azure resources – important when costs of Azure resources in a subscription are shared over departments.

Azure Calculator

Microsoft provides a Cloud Platform called Azure containing over 100 services for its customers. They are charged for most of the services when consuming them. These charges (cost) can be estimated using the so-called ‘Pricing calculator.’

You can search for a product (service) with the pricing calculator and subsequently select it.

Azure Price Calculator

Next, a pop window on the right-hand side will appear, and you click on view. Finally, a window will appear with the options for, in this case, Logic Apps. You can select the region where you like to provision your product (service), and depending on hosting, other criteria specify what you like to consume. In addition, you can select what type of support you want and licensing model – and there is also a switch allowing you to see what the dev/test pricing is for the product.

Furthermore, if you want to estimate a solution consisting of multiple products, you can select all of them before specifying the consumption characteristics. The calculator will, in the end, show the accumulated costs for all products.

Other tabs in the calculator showcase sample scenarios to calculate the cost potential savings when already running resources in Azure and FAQs. And lastly, at the bottom, you can click purchasing options for the product(s).

More details of Azure pricing are available on the pricing landing page.

Considerations Cost Calculator

An Azure calculator is a tool for estimating and not actual costs generated by a client when using the products. It depends on the workload, the number of environments, sizing, and support costs (not just from Microsoft itself, yet also the cost of those managing the product from the client-side). Using the tool can be a good starting point to provide the client a feeling of the cost generation of potential workloads that run on the platform. Furthermore, you can also use the tool to perform an overall calculation by including multiple environments, sizing, and support leveraging Excel. In addition, there is also a TCO calculator through the Azure pricing landing page.

Cost Management

The cost management + billing service and features are available in any subscription in the Azure portal. It will allow you to do administrative tasks around billing, set spending thresholds, and proactively analyze azure cost generation. For example, in the Azure Portal, under Cost Management and Billing, you can find Budgets to create a budget for your costs in your subscription. In the create budget, you can define thresholds on actual and forecasted costs, manage an action group, specify emails (recipients for alerts) and language.

Azure Cost Management Budgets

Considerations Cost Management

A key aspect regarding cost control is to set up budgets (mentioned earlier) at the beginning once a subscription before workloads land or resources are provisioned to develop cloud solutions. Furthermore, once consumption of Azure resources starts, you can look at recommendations for cost optimizations and Costs Analysis. For instance, the cost analysis (preview) can show the cost per resource group and services.

Azure Cost Analysis

It is recommended to separate workloads per subscription as per the subscription decision guide. And one of the benefits is splitting out costs and keeping them under control with budgets. And lastly, Azure Advisor can help identify underutilized or unused resources to be optimized or shut down.

Tagging

Tagging Azure resources is a good practice. A tag is a key-value pair and is helpful to identify your resource. You can order your resource with, for instance, a key environment and value dev (development) and a key identifying the department with value marketing. Moreover, you can add various tags (key/values), up to 50. Each tag name (key) is limited to 512 characters and values to 256 characters. More information on limitations is available on the Microsoft docs.

Tagging Considerations

With tags, you can assign helpful information to any resource within your cloud infrastructure – usually information not included in the name of available in the overview of the resource. Tagging is critical for cost management, operations, and management of resources. More details on how to apply them are available in the decision guide. Furthermore, you can enforce tagging through Azure policies – see the Microsoft documentation on policy definitions for tag compliance.

Reporting

Stakeholders in Azure projects will be interested in cost accumulation for workloads in subscriptions. Therefore, reports of resource consumption in the euro, for example, are required. These reports can be viewed in the Azure Portal under Cost Management and Billing. However, you will need filters in the cost analysis or use the preview functionality to be more specific. Or you can export the data to a storage account and hook it up to PowerBI, or use third-party tooling like CloudCtrl.

Cloud Control

And finally, as a developer, you can also leverage the available APIs to get costs and usage data. For example, the Azure Consumption APIs give you programmatic access to cost and usage data for your Azure resources. With the data, you can build reports.

Reports considerations

With costs, reports are essential to realize who the target audience is, what information they are looking for and how to present it. In addition, each active resource consumes the Azure infrastructure inside a data center, leading to cost. And cost should represent value in the end. Hence, reporting is critical for stakeholders in your cloud projects. The analysis of costs is in good hands with the cost analysis capabilities; however, the presentation requirements might differ and sometimes require a custom report by leveraging, for instance, PowerBI or a third-party tool.

Wrap up

In this blog post, we discussed Azure cost and hopefully made it clear that developers should care about cost, and they have tools and services available to make life easier. For example, they can set up cost management infrastructure themselves in their dev/test subscriptions if not already enforced or done by IT. Furthermore, they can make IT and the architect(s) aware of it if it is not in place. In the end, I believe it is a shared responsibility of developers and IT responsible for managing the Azure environments/subscriptions.

Secret Management in the Cloud

I have been using Azure Key Vault for secret management for the last two or three years in my projects or advice my peers, client, and colleagues I work with to do so. Azure Key Vault is a service that provides storing and managing secrets with policies and the ability to access them using .NET code. Moreover, it is not just .NET yet also a service principal that can access it to get a secret for establishing a connection or a pipeline. The secrets can be API keys, connection strings, credentials, certificates, etc. I like to discuss a secret management use case in this blog post and dive into its details.

Use case Key Vault and D365 FO Business Events

In a recent project regarding unlocking data from a Dynamics 365 Finance and Operations (FO) instance, I leveraged the concept of Business Events, where a Logic App subscribes to a specific event published on a custom Event Grid Topic. Let me further explain the scenario and where Key Vault comes into play. Below you see a diagram of integration between D365 FO and third party system. The latter receives data from D365 based upon a specific business event.

D365 FO Business Events

Within D365 FO, you can define a destination for a business event. As shown in the diagram, the destination is an Event Grid Topic. When following the Microsoft documentation of Business Events and Event Grid, you will notice that a Key Vault is required to keep the access key of the Event Grid Topic as a secret. Furthermore, you will need to create a so-called App registration in

Azure Active Directory. Azure App registrations are a simple and effective way to configure authentication and authorization workflows for many client types. In this case, a client identifying D365 – allowing access to the Key Vault instance to extract the access key for the custom Event Grid Topic.

Once the app registration is in place, the next step is to add it to the access policies in the Key Vault instance. The registration represents D365, and it needs access to the Key Vault to extract the access key for the Azure Event Grid topic. The app registration only requires the Get and List secret permissions to retrieve the Key Vault secrets.

The endpoint configuration is the next step when the app registration and policy are in place, the custom Event Grid topic is available, and its access key is a secret in Key Vault. The screenshot below shows the configuration of an actual endpoint (destination) for the events – the custom Event Grid topic.

Business Event Endpoint Configuration

For configuring the endpoint (destination), you need to provide a name. So first, the endpoint type is filled in by default, followed by the endpoint URL (destination endpoint – Event Grid topic URL) and then the details for the Key Vault. These details are the client id of the app registration, its secret, the DNS name of the Key Vault instance, and key vault secret name – which has the secret, i.e., access key to the custom Event Grid topic. And finally, you can press Ok for the creation of the endpoint. You can subsequently attach the endpoint to the necessary business event and activate it when the endpoint is created.

Once the endpoint is active and a specific business event is attached to the endpoint, the event will end up with the subscriber – Logic App. An example of a business event is shown below:

{

  “BusinessEventId”: “PurchaseOrderConfirmedBusinessEvent”,

  “ControlNumber”: 5637365024,

  “EventId”: “9D42A382-12E8-48F6-9BB2-29A1G4E39773”,

  “EventTime”: “/Date(1642759229000)/”,

  “LegalEntity”: “fnl1”,

  “MajorVersion”: 0,

  “MinorVersion”: 0,

  “PurchaseJournal”: “PO1-002342-11”,

  “PurchaseOrderDate”: “/Date(1642723200000)/”,

  “PurchaseOrderNumber”: “PO1-002342”,

  “PurchaseType”: “Purch”,

  “TransactionCurrencyAmount”: 1553.46,

  “TransactionCurrencyCode”: “EUR”,

  “VendorAccount”: “IFF1095”

}

The Logic App can use the details to retrieve more information (through OData calls) about the purchase order in this case. And as shown in the diagram, send the enriched json to a service bus queue to handover the another Logic App to transform it into an XML to be sent to an application Basware (provider of software for financial processes, purchase to pay, and financial management).

Managing Key Vault

To properly set up the process around Key Vault and secrets, the administrator (Azure Ops) is responsible for creating the app registration. The administrator will make the app registration and manage the Key Vault. Moreover, the person is also the one in my view that does the endpoint configuration. Therefore, the integration developer will only need to connect the Logic App to the Event Grid topic. Similarly, the SFTP connection requiring credentials or certificates can also leverage the Key Vault and require the same administrator.

The diagram below shows what the administrator can do regarding the app registration and managing the Key Vault instance. Also, the authentication process is shown from the application side – in our case, creating the endpoint from D365. Finally, D365 will use the app registration to authenticate against Azure AD to retrieve a token necessary to access the key vault secret.

Key Vault Management

I like to point here regarding this scenario that business events might need to be set up again when a database refresh is done. Note that when the endpoint configuration fails, you can see an error like:

Unable to get secret from Key Vault DNS: <dns of the key vault instance> Secret name: <name secret>

In that case, either the app registration client id or secret is wrong, or worse, the app registration is expired (the error messages will not tell you that!). An app registration expires (the max is two years). Hence, be aware that the events when the app registration is expired will not reach the Event Grid topic, and errors will occur on the D365 side. Therefore, I recommend monitoring the expiration for the app registration, and also, the secrets can have an expiry date – so keep an eye on that too!

Other Cloud Public Cloud Providers

Interestingly, Azure is not the only public cloud platform with a secret certificate and key management service. For example, AWS actually has three services – AWS Secrets Management, AWS Certificate Manager, and AWS CloudHSM. With AWS Secrets Manager, users can manage access to secrets using a fine-grained set of policies, control the lifecycle of secrets, and secure and audit secrets centrally. Furthermore, this is a managed service with a pay-as-you-go model available in most AWS regions. Sound familiar? Azure Key Vault is similar, right? Almost, yet Key Vault has most of the capabilities found in the three earlier mentioned AWS Services.

What about the Google Cloud Platform? Well, on GCP, you will find Secret Manager, which also enables users to store and manage secrets, including policies and rotation. Furthermore, the service offers management of certificates. And lastly, the public cloud has a separate service for key management with Key Management Service (KMS).

Some Cloud IT Trends in 2022

We are a few weeks into 2022, and you might have seen or read articles and reports on trends for this year. I also like to outline the few significant IT trends in this blog post from my point of view based upon my work as Cloud Editor for InfoQ and experiences in the consulting field.

First of all, the importance of Artificial Intelligence (AI). You can see that Microsoft, for example, is structurally building these kinds of capabilities into their entire platform. Its intelligence is increasing rapidly, and you can already see with enterprises that they can quickly make valuable business applications with it.

Microsoft Azure AI Platform

Microsoft is already implementing it in their Azure environment. For example, monitoring users’ login behavior is a straightforward example: they continuously keep track of which user logs in when and from which location. They also immediately pass all the data they collect through an AI robot, which will make connections. Furthermore, other examples are that the company enhanced its Translator service and launched the Azure OpenAI service. And it’s not just Microsoft as other public cloud vendors AWS and Google are on board too.

The second trend I see is that more and more companies are looking at options for customizing applications without really having to program, with no code or low code. This has been in the spotlight for some time now, especially among larger companies that would like to facilitate their so-called citizen developers to develop software for use in their own work.

To this end, Microsoft has developed the Power Platform over the past two to three years into a mature low-code platform, which is also interesting for larger organizations. However, you do have to look closely at governance; you can’t just release that completely to users, and you have to build in-game rules, frameworks, and guidelines.

Microsoft Power Platform

We also see increasing adoption of that platform among enterprises, especially with Dynamics 365. The combination of Dynamics 365, Office 365, and Power Platform is becoming a compelling low-code platform for building business applications. Microsoft has an excellent starting position in the low-code market space with competitors like OutSystems, Mendix, and offerings by AWS (HoneyCode, Amplify) and Google (AppSheets). Also, I recommend reading the InfoQ article: Low-Code Platforms and the Rise of the Community Developer: Lots of Solutions, or Lots of Problems?

The third major trend is cloud integration. In recent years, many organizations have moved to the cloud with their applications and data or will move in the wake of COVID-19. Moreover, organizations that have moved to the cloud are now discovering that as you adopt more cloud technology, the need for integration between those systems increases.

Assume you have a CRM from Microsoft, an ERP from SAP, and a data warehouse on Azure. Your business processes run across all those systems. So you must therefore ensure that these systems can exchange data with each other. And you have to make sure that if you have a CRM in the cloud and a customer portal based on customization, you can also see your customer data in that portal. Or some data needs to enter a system on-premise. So, in the end, you need to integrate that!

Therefore, the need for cloud integration is increasing, especially among organizations increasingly investing in the cloud. Microsoft has an answer to that, too, with a perfect and very complete integration platform on Azure named Azure Integration Services (AIS). As a result, even the most demanding enterprises can meet their needs with this.

Azure Integration Services

Recent analyst reports from Gartner and Forrester showed the services are leading. For example, Microsoft was among the leaders in the latest Forrester Wave for Enterprise Integration-Platform-as-a-Service (iPaaS) 2021. In addition, it has been in the leader quadrant of iPaaS reports from Gartner consistently over the last couple of years and that also accounts for API Management.

Lastly, with the last trend, the need for integration increases, and so will the demand for supporting and monitoring them.